In this paper, we study some properties of the generalized Fokker-Planck equation induced by the time-changed fractional Ornstein-Uhlenbeck process. First of all, we exploit some sufficient conditions to show that a mild solution of such equation is actually a classical solution. Then, we discuss an isolation result for mild solutions. Finally, we prove the weak maximum principle for strong solutions of the aforementioned equation and then a uniqueness result.

The Fokker-Planck equation for the time-changed fractional Ornstein-Uhlenbeck stochastic process

Ascione G.;
2021-01-01

Abstract

In this paper, we study some properties of the generalized Fokker-Planck equation induced by the time-changed fractional Ornstein-Uhlenbeck process. First of all, we exploit some sufficient conditions to show that a mild solution of such equation is actually a classical solution. Then, we discuss an isolation result for mild solutions. Finally, we prove the weak maximum principle for strong solutions of the aforementioned equation and then a uniqueness result.
2021
Bernstein functions
Caputo-type derivative
fractional Brownian motion
generalized Fokker-Planck equation
subordinator
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14246/492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact