We introduce a fractional generalization of the Erlang Queues M∕Ek∕1. Such process is obtained through a time-change via inverse stable subordinator of the classical queue process. We first exploit the (fractional) Kolmogorov forward equation for such process, then we use such equation to obtain an interpretation of this process in the queuing theory context. Then we also exploit the transient state probabilities and some features of this fractional queue model, such as the mean queue length, the distribution of the busy periods and some conditional distributions of the waiting times. Finally, we provide some algorithms to simulate their sample paths.

Fractional Erlang queues

Ascione Giacomo;
2020-01-01

Abstract

We introduce a fractional generalization of the Erlang Queues M∕Ek∕1. Such process is obtained through a time-change via inverse stable subordinator of the classical queue process. We first exploit the (fractional) Kolmogorov forward equation for such process, then we use such equation to obtain an interpretation of this process in the queuing theory context. Then we also exploit the transient state probabilities and some features of this fractional queue model, such as the mean queue length, the distribution of the busy periods and some conditional distributions of the waiting times. Finally, we provide some algorithms to simulate their sample paths.
2020
Caputo fractional derivative
Continuous time Markov chain
Mittag-Leffler function
Stable subordinator
Time-changed process
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14246/468
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact