A new model for the evaluation of the electric field in a cable termination realized through a nonlinear stress control tube (SCT), is presented in this paper. It is based on the electro-quasistatic approximation of the Maxwell equations: the Laplace equation describes the field in the nonconducting regions whereas a diffusion-like equation gives the field dynamics in the stress control tube. A numerical model is devised by solving the Laplace equation by finite difference and diffusion equations by the Galerkin method. It is shown that even the well-known RC transmission line model can be derived from this general approach. The underlying approximations leading to the circuital model are discussed in detail. The proposed model, in contrast with the circuital one, allows us to take into account properly the nonlinear SCT characteristics and the actual boundary conditions: in this way both spatial and temporal effects of the nonlinearity are considered. The numerical results obtained by considering the general field approach and by using the transmission line model are compared.

Field distribution in cable termination from a quasi-static approximation of the Maxwell equation

MIANO, GIOVANNI;
1996-01-01

Abstract

A new model for the evaluation of the electric field in a cable termination realized through a nonlinear stress control tube (SCT), is presented in this paper. It is based on the electro-quasistatic approximation of the Maxwell equations: the Laplace equation describes the field in the nonconducting regions whereas a diffusion-like equation gives the field dynamics in the stress control tube. A numerical model is devised by solving the Laplace equation by finite difference and diffusion equations by the Galerkin method. It is shown that even the well-known RC transmission line model can be derived from this general approach. The underlying approximations leading to the circuital model are discussed in detail. The proposed model, in contrast with the circuital one, allows us to take into account properly the nonlinear SCT characteristics and the actual boundary conditions: in this way both spatial and temporal effects of the nonlinearity are considered. The numerical results obtained by considering the general field approach and by using the transmission line model are compared.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14246/2793
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact