We study the regularity of local minimisers of a prototypical free-discontinuity problem involving both a manifold-valued constraint on the maps (which are defined on a bounded domain ) and a variable-exponent growth in the energy functional. To this purpose, we first extend to this setting the Sobolev approximation result for special function of bounded variation with small jump set originally proved by Conti, Focardi, and Iurlano (Conti et al., 2017; Conti et al., 2019) for special functions of bounded deformation. Secondly, we use this extension to prove regularity of local minimisers.

Manifold-constrained free discontinuity problems and Sobolev approximation

Dipasquale, Federico Luigi;
2024-01-01

Abstract

We study the regularity of local minimisers of a prototypical free-discontinuity problem involving both a manifold-valued constraint on the maps (which are defined on a bounded domain ) and a variable-exponent growth in the energy functional. To this purpose, we first extend to this setting the Sobolev approximation result for special function of bounded variation with small jump set originally proved by Conti, Focardi, and Iurlano (Conti et al., 2017; Conti et al., 2019) for special functions of bounded deformation. Secondly, we use this extension to prove regularity of local minimisers.
2024
Free-discontinuity problems Variable-exponent-spaces
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14246/1240
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact