Atomic force microscopes have proved to be fundamental research tools in many situations and in a variety of environmental conditions, such as the study of biological samples. Among the possible modes of operation, intermittent contact mode is one that causes less wear to both the sample and the instrument; therefore, it is ideal when imaging soft samples. However, intermittent contact mode is not particularly fast when compared with other imaging strategies. In this paper, we introduce three enhanced control approaches, applied at both the dither and z -axis piezos that determine the motion of the microscope tip, to address the limitations of existing control schemes. Our proposed practical strategies are able to eliminate different image artifacts, automatically adapt scan speed to the sample being scanned, and predict its features in real time. The result is that both the image quality and the scan time are improved.

Improved Control Strategies for Atomic Force Microscopes in Intermittent Contact Mode

Coraggio, Marco;di Bernardo, Mario
2018-01-01

Abstract

Atomic force microscopes have proved to be fundamental research tools in many situations and in a variety of environmental conditions, such as the study of biological samples. Among the possible modes of operation, intermittent contact mode is one that causes less wear to both the sample and the instrument; therefore, it is ideal when imaging soft samples. However, intermittent contact mode is not particularly fast when compared with other imaging strategies. In this paper, we introduce three enhanced control approaches, applied at both the dither and z -axis piezos that determine the motion of the microscope tip, to address the limitations of existing control schemes. Our proposed practical strategies are able to eliminate different image artifacts, automatically adapt scan speed to the sample being scanned, and predict its features in real time. The result is that both the image quality and the scan time are improved.
2018
atomic force microscope
AFM
dynamic PID
hybrid PID
IC-AFM
intermittent contact mode
predictive controller
scan speed regulator
tapping mode
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14246/1217
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact